
July 20 2022

Ben Evans (He / Him)
Senior Principal Software Engineer
beevans@redhat.com

What Java Devs Need To Know About
Observability

• Red Hat, SPSE

• New Relic, Lead Architect

• jClarity, Co-founder (acq MSFT)

• Deutsche Bank
• Chief Architect (Listed Derivatives)

• Morgan Stanley
• Google IPO

• Sporting Bet, Chief Architect

About Me - Career

• Java Champion

• JavaOne Rock Star Speaker

• Java Community Process  
Executive Committee

• London Java Community
• Organising Team
• Co-founder, AdoptOpenJDK

About Me - Community

Recent Books

• We will use Adoptium JDK - https://adoptium.net/

• OpenJDK / Temurin 17 (LTS) with HotSpot JVM

• Repos for Demos
• https://github.com/kittylyst/OTel
• https://github.com/kittylyst/observability-java-devs
• https://github.com/newrelic/newrelic-opentelemetry-examples
• https://quarkus.io/guides/opentelemetry

• My website: https://kittylyst.com

Installing Java & Demos

https://github.com/kittylyst/observability-java-devs
https://github.com/newrelic/newrelic-opentelemetry-examples
https://quarkus.io/guides/opentelemetry
https://kittylyst.com

• Observability Concepts

• Introducing OpenTelemetry

• Java & OpenTelemetry

• Conclusions & The Future

Agenda

• What is Observability?

• How Do We Understand Cloud Native Apps?

• What Data Do We Need To Collect?

• What Architectural Implications Are There?

Observability Concepts

• Application Performance Monitoring (APM) has ~15 year history

• Different world
• Release cycles measured in months, not days
• Monoliths, not microservices
• En premises, not cloud-native

• Manual & semi-manual instrumentation

• Relatively simple architectures
• Allowed ops teams to develop intuition for failure modes

History of APM

A Typical Architecture

cluster

Java
source
code

.class
file

javac

web

JVM

load balancer

CI jar

development environment data sourceJVMJVM

web web web

• Conceptually simple
• Instrument systems & applications to collect observability data
• Send this data to a system that can store & analyze it
• Provide insights (for devops, management, SREs) into systems
• Get answers to questions that you didn’t know you’d have to ask

• System control theory
• How well can internal state of a system be inferred from outside?

• Actionable insights from the entire system
• Not just one piece

• Tell you the overall health

What is Observability?

• Modern apps are much more complex
• More services & components
• More complex topology
• More sources of change & more rapid change

• New technologies with new behaviours
• Dynamically scaling services
• Container environments
• Kubernetes
• Function-as-a-Serivce
• Kafka

How Do We Understand Cloud-Native Apps?

• Java designed for VM-on-bare-metal world

• Containers are here

• What do Java developers have to do to adapt?

• How does container Java measure up to other tech stacks?
• Footprint
• Density
• Startup time

Java In Containers

Distributed System running on OpenShift

Request

Red Hat OpenShift

Database

Database

Mainframe

Administrator

Service
(Kafka)

Service
(Quarkus)

Service
(Decision
Manager)

Service
(Camel)

Service
(Service Mesh)

Service
(Spring Boot)

Service
(Node.JS)

Service
(DataGrid)

User

Service
(JBoss EAP)

IoT / Cloud Example

Server
IoT  

stream job

Sensor

Watcher

Bayesian
model

Data
store

• What is the overall health of my solution?

• What is the root cause of errors and defects ?

• What are the performance bottlenecks?

• Which of them could impact customer experience?

User Perspective

Lock In Approach

User

Data Collection
Vendor X

Data Processing
Vendor X

Instrument
Vendor X (agent)

Visualization
Vendor X

Traditional  
APM Vendors

Complexity of Microservice Architectures

Multiple Relevant Personas (Dev, DevOps, etc)

Scale out of service clusters

Heterogenous Tech Stacks

Large numbers of smaller services

Portfolio Components
Log Management
Log vendors collect and analyze
system logs, often both for IT
operations troubleshooting use
cases and for security teams.

Application
Performance
Monitoring
APM products surface insight
about app performance, including
load, response time and errors.
APM products include those that
identify the line of code
associated with a problem, as
well as those that use distributed
tracing technologies to deliver
insight into performance.

Alerting
Alerting vendors manage
oncall personnel schedules,
collect alerts from the range
of monitoring systems in use
and issue alerts to the
correct responders when
incidents occur.

Event
Correlation
Event analytics tools
analyze events issued
across systems,
correlating those that
appear related into a
single incident that
responders can dig into
to assess the root cause.

Infrastructure
Monitoring
Infrastructure monitoring tools collect
data about the performance of
infrastructure, including servers and
storage devices, alerting users when
performance problems occur.

Performance
Testing
Performance, or load, testing
simulates user traffic at
volume to test performance
from the browser or app
perspective.

Real User
Monitoring
RUM tracks real users in
order to isolate whether a
performance problem is
related to end user
geography, browser type,
operating system, device
type or other common
characteristics.

Serverless
Monitoring
Serverless vendors that
have developed
mechanisms for
collecting more
performance data than
is made available by the
functions as a service
providers.

Synthetic
Monitoring
These tools generate
synthetic traffic that’s
designed to mimic
real user traffic in
order to identify
problems before they
affect real users.

Tools & Aspects of Observability

Tool Usage

Infrastructure monitoring Health and performance of the containers and environment

Application performance
monitoring (APM)

Investigate application behaviour at the service level. Determine where calls are
going and how they perform.

Real user monitoring Understand the experience of real users by using data from browsers about how
your site performs - and isolate issues to the frontend or backend.

Synthetic monitoring Measure the impact that third-party APIs and network issues have on the
performance and reliability of your app.

Log analysis Dig deeper into the context of why issues are occurring

• Traces

• Metrics

• Logs

• What Can We Do With The Data?

What Data Do We Need To Collect?

• Shows for each service invocation
• Which instance was called
• Which method was invoked
• How the request performed
• What the results were

• Parts of a single user call (spans) collected into a trace
• Which services were invoked
• Which containers / hosts they were running on
• What the results of each call were

• Traces form a tree structure of spans

Distributed Traces

Understanding Tracing

Think time  
(or intrinsic time)

Perceived
time

ServerBrowser

Multi-Tier Apps

Perceived
time Think

time

Think
time

Think
time

DatabaseServerBrowser

Distributed Tracing
WebBrowser ServiceDB Auth

Perceived
time

Sample Span

{
"trace_id": "kDMI7LTxLxTj220awNARJw==",
"span_id": "9ir6veJ4Hdw=",
"parent_span_id": "bgnsqqPvjYQ=",
"name": "Sample-8",
"kind": 1,
"start_time_unix_nano": 1588334156464409000,
"end_time_unix_nano": 1588334156470454639,
"attributes": [{

"key": "attr",
"string_value": "value3"

}],
"status": {

"message": "ok"
}

}

• Instrumentation of application & middleware

• Distributed context propagation

• Ingest & Storage

• Search & retrieval

• Visualization

Distributed Tracing Components

• Instrumentation of application & middleware
• OpenTelemetry

• Distributed context propagation
• OpenTelemetry

• Ingest & Storage
• OpenTelemetry Collector, Jaeger

• Search & retrieval
• Jaeger

• Visualization
• Jaeger

Distributed Tracing Components - Tools

• Visualization is the hard part
• Traceview is usual form
• Representation of how the tree of spans was generated
• Too low-level

• New visualizations needed
• Especially as systems become more complex

• What about data sampling?

Distributed Traces

• Numbers measuring specific activity over a time interval

• Typically 4 parts: Timestamp, Name, Value, Dimensions

• Dimensions represent different values of some tag
• Present as key / value
• Values must allow for aggregation
• Not all metrics systems support dimensions

• Volume doesn’t scale with request traffic (unlike logs or traces)

Metrics

• System metrics (CPU, memory, disk)

• Infrastructure metrics (e.g. AWS CloudWatch)

• Web tracking scripts (e.g. Google Analytics)

• Application metrics (APM, error tracking)

• Business metrics (e.g. customer sign-ups)

Metrics - Examples

• Dimensionality
• Does the consumer support key / value annotation of the measurement?
• Other alternative is hierarchical

• Aggregation Discipline
• Client-side - discrete samples converted to a rate before pub
• Server-side - aggregation occurs at server

• Publishing
• Client Push
• Server Poll

• NB: Micrometer handles Key Differences Between Systems

Architectural Aspects of Metrics

• Immutable records of discrete events that happen over time

• 3 possible types - plain text, structured and binary
• Not all products support all 3 types

• Examples
• System & server logs (syslog)
• Firewall & network system logs
• Application (log4j)
• Platform & server logs (Apache, nginx, databases)

Logs

• 2 types - Centralized & Distributed

• Centralized
• Typical Observability pattern
• Aggregate logs from individual microservices to single location
• Single searchable, filterable and groupable dataset

• Distributed
• Less common
• Seen when some system constraint prevents centralized logging

• E.g. bandwidth, contention with application processes
• Some logging systems work better when deployed on app hosts

Logs

• Some observables can be sourced in multiple ways

• E.g. overall response time
• Log file
• Metric
• Infer from trace

• Decide which route is the golden source
• May be differences between same signal sourced in different ways

What Can We Do With The Data?

Aspects of the data

Pillar Usage Characteristic

Metric Trend and graph Aggregateable

Logs Grep for results Discrete Events

Traces Identify slow subcomponents / services Request Scoped

Actionable Insights

Error Type Signal Stakeholders

Service Alert Metric SRE, DevOps

Service Timeout Tracing DevOps, SDE

Infrastructure Problem Metric SRE, DevOps

Configuration Error Metric DevOps

Memory Leak Metric, Log SDE, DevOps

• Multiple Different Architectural Approaches
• Implications for both apps & Observability components

• Most Common Choices (Observability)
• Aggregate on host, send aggregates to SaaS
• Send everything to SaaS (within Cloud region)
• Keep everything on cluster (e.g. eBPF)
• Roll Your Own

What Architectural Implications Are There?

Metrics Traces + MetricsHost

Reference Architecture: Aggregate on Host

OpenTelemetry
Collector  

Agent

Application

Library

OpenTelemetry
Collector

Gateway

Host

OpenTelemetry
Collector  

Agent

Application

Library

Backend

Backend

Key:

Metrics Traces + MetricsHost

Reference Architecture: Direct Send

Application

Library

OpenTelemetry
Collector

Gateway

Host

Application

Library

Backend

Backend

Key:

Architecture - Keep On Cluster

Architecture - Roll Your Own

OpenTelemetry
Collector

Ingest
Pipeline

Micro
services

Data Store Backend
(Jaeger?)

App

Agent

• Key ideas
• Batch vs streaming
• Event time vs processing time
• Data windowing
• Watermarks
• Filtering & Joining (& related FP-like concepts)

• Useful blog posts (Tyler Akidau)
• https://www.oreilly.com/radar/the-world-beyond-batch-streaming-101/
• https://www.oreilly.com/radar/the-world-beyond-batch-streaming-102/

Understanding Streaming Architectures

https://www.oreilly.com/radar/the-world-beyond-batch-streaming-101/

• Helps handle the complexity of modern architecture apps

• Allows you to answer questions about your application & business

• Is a mindset, not a practice or product

• Absorbs & extends classic monitoring systems

• Helps identify the root cause of issues

• Predicts what could go wrong

Observability

• Origins

• What is OpenTelemetry?

• OpenTelemetry Components

• Open Source Aspects

• Current Status

• Running OpenTelemetry

Introducing OpenTelemetry

• APM / Monitoring dominated by proprietary vendors

• Various OSS projects started in response
• Prometheus / OpenCensus
• OpenTracing / Zipkin / Jaeger
• Elasticsearch / Logstash / Kibana (ELK stack)

• Inflection point in the market
• Switch from proprietary to OSS led
• Move from APM -> Observability
• Many vendors switching to OSS
• Lots of Observability startups that have always been (partially) OSS

Origin of OpenTelemetry

• OpenTelemetry is a set of standards, formats & libraries
• NOT a data ingest or Observability backend
• Aggregation possible at different levels & stages
• Supports Observability data architecture options

• Explicitly cross-platform: NOT Java-specific
• Java is mature implementation
• Go, .NET, Node also all fairly mature

• Works with bare metal & VMs
• But explicitly part of the CNCF - definitely cloud-first

What Is OpenTelemetry?

• OpenTelemetry
• Framework that integrates with OSS & commercial products
• Collect telemetry from apps written in many languages
• OTel Tracing based on merger of OpenTracing / OpenCensus

• Other early adopter cloud tools
• collectd: a daemon that collects metrics
• statsd: a daemon that listens for statistics
• fluentd: a daemon that unifies log collection
• Zipkin, Jaeger: OSS distributed tracing back-ends

• Jaeger has deprecated own client libs in favour of OpenTelemetry

Comparing OTel & other OSS tools

What Are Components of OpenTelemetry?

• The API contains:
• Interfaces used by developers to instrument their apps & libraries

• The SDK contains:
• Constructors used by application owners to configure their set-up
• Interfaces used by plug-in authors to write integrations

• Long term support
• API: 3 years support guarantee
• Plug-in Interfaces: 1 year support guarantee
• Constructors: 1 year support guarantee

OpenTelemetry Components

OpenTelemetry Components

Specification
Describes the cross-language
requirements and expectations  

for all implementations

API SDK Data

Collector
Vendor-agnostic implementation
on how to receive, process and

export telemetry data

Instrumentation
Make every library and
application observable  

out-of-the-box

• Vastly reduced vendor lock-in

• Open specification wire protocols

• Open-source client components

• Standardised architecture patterns

• Increasing quantity of open-source backend components

Isn’t This Just APM with New Marketing Terms?

Open Source Approach

User

Data Collection
Open source

Data Processing
Vendor X or OSS

Instrument
Open source

Visualization
Vendor X or OSS Cooperation  

in Industry:
Open Source

Who’s Contributing?

OpenTelemetry
Company

Contributions

Elastic 1.1%
Shopify 1.3%

Atlassian 1.4%
Datadog 1.6%

New Relic 3.2%
Amazon 3.4%
Google 4.5%

Red Hat 5.2%

Dynatrace 5.9%

Lightstep 7.0%

Microsoft 19.5%

43.7% Splunk

The Three Pillars

Metrics
Numbers describing a particular

process or activity measured  
over intervals of time

Traces
Data that shows which line of code
is falling to gain better visibility at
the individual user level for events

that have occurred

Logs
Immutable record of  
discrete events that  
happen over time

• Distributed Tracing is at v1.0
• Track the progress of a single request
• Replaces OpenTracing completely

• Metrics is at 1.0
• Both application & runtime metrics
• Still some ongoing work
• Will Metrics replace Prometheus over time?

What Is Current Status Of OpenTelemetry?

• Logging is still in DRAFT
• Not expected to reach v1.0 until late 2022
• Anything that is not a trace or metric is a log
• Do Logs really split into subtypes: Logs & Events

• Different language implementations have different maturities
• Java / JVM is a mature implementation
• Other langs, e.g. Python, may have more issues

What Is Current Status Of OpenTelemetry?

• Traces
• No serious OSS competitors to OTel

• Metrics
• Prometheus already well established for K8S

• Less well-established elsewhere
• Prometheus has somewhat stagnated of late

• Logs
• Log landscape is rich with incumbent solutions

• Both OSS and vendor

• Many companies want a unified approach

Different Areas Have Different Competitors

• The Collector

• Network service that can
• Receive
• Process
• Export telemetry data

• Written in Go

• Vendor neutral

• Works with a wide variety of data formats
• Routes to a variety of OSS or vendor backends

Running OpenTelemetry

Collector Architecture

Running A Collector

DEMO
https://github.com/kittylyst/OTel

https://github.com/kittylyst/OTel

• Usability: Reasonable default config & works out of the box

• Performance: Performant under varying loads and configurations

• Observability: Good example of an observable service

• Extensibility: Customizable without touching the core code

• Unification: Single codebase supports traces, metrics & log

Collector Objectives

• OpenTelemetry Protocol (OTLP) defines
• Encoding
• Transport
• Delivery

• Performance is a key concern
• Typically encoded as Protobuf over HTTP/2
• Java implementation uses GRPC libraries for high-performance
• Other encodings possible, e.g. HTTP / JSON

OTLP

• Basic Concepts

• Traces in OpenTelemetry

• Metrics in OpenTelemetry

• Auto-Instrumentation

• JFR & OpenTelemetry

Java & OpenTelemetry

• Manual Instrumentation requires calls to telemetry library
• Record traces or metrics
• Spans created & finalised

• Headers used to propagate IDs between services
• Similar approach to logging (e.g. log4j)

• Automatic Instrumentation
• Depends upon bytecode weaving

• Java Agent - java.lang.instrument
• Framework support (special classloader)

• Halfway house
• Using special annotations

Manual & Automatic Instrumentation

• Three main projects under the open-telemetry org

• opentelemetry-java: Manual instrumentation including API & SDK

• opentelemetry-java-instrumentation: Auto instrumentation agent

• opentelemetry-java-contrib: Helpful & standalone libraries
• JMX metric gathering
• JFR support (Beta)

• Focused on Traces & Metrics for now

Java Otel Project Structure

https://github.com/open-telemetry/opentelemetry-java
https://github.com/open-telemetry/opentelemetry-java-instrumentation
https://github.com/open-telemetry/opentelemetry-java-contrib

Application Architecture

• Key components
• API
• SDK
• Exporter (OTLP)

• Some configuration is always required

Tracing Architecture

• Traces are sampled
• Trade-off due to load

• Open Questions
• Exactly how to conduct the sampling?
• Should everything be sampled at the same rate?
• Sample errors more frequently?
• Long-tail sampling?

• Only client libs provided by OTel Java projects
• Other components are also needed

Tracing in Java OpenTelemetry

Manual Instrumentation (Traces)

DEMO
https://github.com/newrelic/newrelic-opentelemetry-examples  

otel-nr-dt

https://github.com/newrelic/newrelic-opentelemetry-examples

• Metric collection is controlled by the OpenTelemetry SDK

• Meter providers (usually global) are used as an entry point
• Meter objects are usually cached

• Metric event is captured along with timestamp & any metadata

• 3 primary instruments
• Counter (only increases)
• Measure (a value aggregated over time)
• Observer (current set of values at a point in time)

Metrics in Java OpenTelemetry

• Aggregation is absolutely key
• Performed by the SDK, not app code
• Developer has limited control over aggregation - by design
• Some architectures aggregate at multiple scales

• Common aggregations
• Sum, count, last value, histogram
• Percentiles are more complex (can’t aggregate easily)

Aggregation in OpenTelemetry

Manual Instrumentation (Metrics)

DEMO
https://github.com/newrelic/newrelic-opentelemetry-examples  

sdk-nr-config

https://github.com/newrelic/newrelic-opentelemetry-examples

• Manually instrumented code
• API is guaranteed to be stable

• Semantic conventions still not 100% stabilized
• Meaning of some data might change in the future

• Code is 100% production ready
• Precise nature of emitted data might change (slightly)

Status of Otel Metrics

• Problems with Manual Instrumentation

• Java Agents

• Demo: Framework Support (Quarkus)

• OTel Java Agent

Java Auto-Instrumentation

• A lot of manual work to instrument code
• And to keep it up to date

• Confirmation Bias
• How can you be sure what’s important to instrument?
• What happens as the application changes over time?

• Often only find out what’s important in an outage

Problems With Manual Instrumentation

• Tooling component
• Written in Java
• Uses java.lang.instrument
• Modifies the bytecode of methods at load time

• To install, use a startup flag:

Java Agents

-javaagent:<path-to-agent-jar>=<options>

• The agent jar must
• Contain a manifest (Manifest.MF)
• Manifest must contain the attribute Premain-Class
• The Premain class must contain a premain() method

• Pre-registration hook for the agent
• Specialized signature:

• From java.lang.instrumentation

Java Agents

public static void premain(String args, Instrumentation instrumentation);

• API provides a simple hook for agents
• An entry point

• Real work is done in the transformer classes

Example Java Agent

public class AllocAgent {
 public static void premain(String args, Instrumentation instrumentation) {
 AllocRewriter transformer = new AllocRewriter();
 instrumentation.addTransformer(transformer);
 }
}

• Java bytecode can be rewritten (or “weaved”)

• Specialized libraries used for this
• CGlib
• ASM
• ByteBuddy

• Modified version of ASM is used internally by the JDK
• Lambda Expressions

Bytecode Weaving

Example Class Transformer
public class AllocRewriter implements ClassFileTransformer {

 @Override
 public byte[] transform(ClassLoader loader, String className, Class<?> redef,
 ProtectionDomain pd, byte[] bytes throws IllegalClassFormatException {

 ClassReader reader = new ClassReader(bytes);
 ClassWriter writer = new ClassWriter(reader, COMPUTE_FRAMES | COMPUTE_MAXS);

 ClassVisitor coster = new ClassVisitor(Opcodes.ASM5, writer) {
 @Override
 public MethodVisitor visitMethod(int ax, String name, String desc,
 String sig, String[] ex) {
 MethodVisitor bmv = super.visitMethod(ax, name, desc, sig, ex);
 return new AllocationRecordingMethodVisitor(bmv, ax, name, desc);
 }
 };
 reader.accept(coster, ClassReader.EXPAND_FRAMES);
 return writer.toByteArray();
 }
}

Framework Instrumentation (Traces)

DEMO
https://quarkus.io/guides/opentelemetry

• Provides Java agent that attaches to any Java 8+ application

• Dynamically injects bytecode to capture telemetry traces

• Supports many popular libraries and frameworks OOTB

• By default, uses OTLP exporter & local collector

Otel Java Auto Instrumentation

Auto Instrumentation (Traces)

DEMO
https://github.com/newrelic/newrelic-opentelemetry-examples  

agent-nr-config

https://github.com/newrelic/newrelic-opentelemetry-examples

• Observability is reaching more & more developers

• OpenTelemetry is gathering steam

• Expect Metrics to reach 1.0 Spring 2022
• Agreeing JVM metrics piece is a key deliverable

• Logs will take longer

• Analysts anticipate OTel will become majority format in 2023

Conclusions & Future Roadmap

• Diversity of tools & technologies in use

• Large matrix of possible deployments

• Need to understand which Observability architecture to use

• OpenTelemetry is still maturing
• Long-term support for standards that aren’t finished yet?
• OSS groups and standards need more participation
• Long tail for older tech already deployed
• Logs are an interesting case

What Are The Challenges?

• Streaming Systems - T. Akidau, S. Chernyak & R. Lax

• Optimizing Java - B. Evans, J. Gough & C. Newland

• Reactive Systems in Java - C. Escoffier & K. Finnigan

• Oracle Java Magazine (free subscription)

A Short Reading List

• The Well-Grounded Java Developer 
(2nd Edition)

• Discount code: ctwjbcn22

Thank You - New Book (& Discount Code)
https://www.manning.com/books/the-well-grounded-java-developer-second-edition

• What is Spring Micrometer?

• Basic Concepts

• Metric Filters

• Demo - Monster Combat

Case Study: Spring Micrometer

• Vendor-neutral application metrics facade

• Interfaces for instruments with dimensional data model
• Timers (regular and long)
• Gauges
• Counters
• Distribution summaries (histograms)

• Export to vendor & OSS solutions

What Is Spring Micrometer

• Micrometer provides a core (as an SPI) & module per consumer

• Handles Key Differences Between Systems

• Dimensionality
• Does the consumer support key / value annotation of the measurement?
• Other alternative is hierarchical

• Aggregation Discipline
• Client-side - discrete samples converted to a rate before pub
• Server-side - aggregation occurs at server

• Publishing

Facading Over Metric Consumer Systems

• Meter - interface for collecting metrics

• MeterRegistry - creates & holds Meter objects
• Each consumer has a specific registry
• SimpleMeterRegistry - in-memory only for experimenting / dev
• CompositeMeterRegistry - holds multiple registries (multi-pub)
• Metrics.globalRegistry - static global registry

• Meters named all-lowercase with dot separators
• Automatically mapped to conventions of consumer

Basic Concepts - Meters & Registries

• Common Instrument types
• Counter - count of all events
• Gauge - single metric value
• Timer - count & total time of all timed events
• LongTaskTimer - long running events that need updating data
• DistributionSummary - tracks the distribution of non-timed events

• Less Common
• TimeGauge, FunctionCounter & FunctionTimer

• Dimensions represented as Tag objects
• Tags also named as dotted lower-case (with non-null values)

Basic Concepts - Meters & Instruments

• Provide greater control over
• How & when meters are registered
• What kinds of statistics they emit

• Three basic functions
• Deny / Accept meters being registered
• Transform meters (change name, tags, units)
• Configure distribution statistics (appropriate meter types)

Metric Filters

• Docker is several things
• Most popular container format
• Daemon to build & run containers
• Desktop software to develop with
• The company that builds the above

• Not all of the software is OSS

• Docker Inc. have decided to start charging license fees

• Podman is a fully OSS replacement - free forever
• Developed by Red Hat
• Available for Linux, Mac & Windows

Docker & Podman

• build - make a container from a Dockerfile

• run - run the container’s main command

• exec - run another command on a container

• ps - list containers (-a for all)

• commit - duplicate a container to another ID

• cp - copy files to or from a container
• Will discuss ports etc later

Basic Podman (Docker) commands

Micrometer Instrumentation

DEMO
https://github.com/ebullient/monster-combat

Thanks: Erin Schnabel

• Humans are poor at guessing
• Measurements can be subjective
• Especially Time measurements

• We all have cognitive biases
• Especially Confirmation Bias

• Best tool against cognitive biases is data
• Data can overwhelm
• Patterns aren’t always easy to spot by eye

Statistics & Data Handling

Systematic and Random Error

• Everyone should know:
• Mean
• Mode
• Percentiles
• Probability distributions

• Sometimes useful
• Standard Deviation (be careful)
• Significance Levels
• Central Limit Theorem
• p-values

Know Basic Statistics

• Real datasets are approximated by theoretical distributions

• Statistical measures (average, variance, etc) summarize data

• Information is always lost in this process

• Usefulness of various different stats depends on the distribution

• Normally-distributed statistics
• Easy and familiar to many
• BUT aren’t a very good model for software performance

• Especially standard deviation

Statistics Summarize Data Distributions

• Real data is often not normally distributed

• JVM applications have a “hot path” where everything works
• Deviations from the path add latency
• Latency >> random error (& latency is never negative)

• Gives rise to a “long tail” distribution
• Technically, a specific kind of Gamma distribution
• Important information is contained in the tail

Non-Normal Statistics

Gamma distribution

• Key quantity: Dynamic Range (DR)
• DR = Max / Min

• One useful technique is “long-tail percentiles”
• Compensates for the high dynamic range

• Example
• Getter method timing

Long-tail Percentiles

50.0% level was 23 ns
90.0% level was 30 ns
99.0% level was 43 ns
99.9% level was 164 ns
99.99% level was 248 ns
99.999% level was 3,458 ns
99.9999% level was 17,463 ns

• “Statistics for Software” - M. Hashemi (Paypal)

• “Same Stats, Different Graphs” - J. Matejka & G. Fitzmaurice
(Autodesk)

Useful Blog Posts

• A profiling tool to gather diagnostics & profiling data
• From an in-flight Java application running in Hotspot

• Proprietary tool in old Java 8, OSS in Java 11 & 8u262

• Low overhead
• Oracle claim ~1% impact to steady state performance
• Observed impact ~3% for a reasonable profile
• Custom profiles can be created

• GUI console available - Mission Control (JMC)

What is JFR?

• JFR is started with a command line flag

• Generates an output file  

• Can be challenging to work with in containers

• A streaming solution exists (Java 14+)

Using Flight Recorder

java -XX:StartFlightRecording=duration=200s,filename=flight.jfr Klass

• Java 14 brought JFR Event Streaming
• A new usage mode for JFR
• Java 17 is only LTS with Streaming

• API lets programs receive callbacks for JFR events
• Can respond to them immediately
• Needed for OTel (due to time window restrictions)

• One obvious way to use this is as a Java Agent

JFR Event Streaming

Example JFR Java Agent
public class AgentMain implements Runnable {
 public static void premain(String agentArgs, Instrumentation inst) {
 try {
 Logger.getLogger("AgentMain").log(Level.INFO, "Attaching JFR Monitor");
 new Thread(new AgentMain()).start();
 } catch (Throwable t) {
 Logger.getLogger("AgentMain").log(Level.SEVERE,"Unable to attach JFR Monitor", t);
 }
 }

 public void run() {
 var sender = new JfrStreamEventSender();
 try (var rs = new RecordingStream()) {
 rs.enable("jdk.CPULoad").withPeriod(Duration.ofSeconds(1));
 rs.enable("jdk.JavaMonitorEnter").withThreshold(Duration.ofMillis(10));
 rs.onEvent("jdk.CPULoad", sender);
 rs.onEvent("jdk.JavaMonitorEnter", sender);
 rs.start();
 }
 }
}

Auto Instrumentation (Metrics)

DEMO
https://github.com/open-telemetry/opentelemetry-java-contrib/

• JFR is key piece of the ecosystem - not all of it
• Part of the pivot towards Open Instrumentation
• JFR can be bridged to OpenTracing and other OSS tools

• JFR-based solution for OpenTelemetry metrics

• Hoping to define a standard set of JVM metrics
• Useable by any Java implementation of OTel

JFR & Open Instrumentation

• What’s JFR & Why Do We Need It?

• Command Line

• JMC

• Programmatic

• Automated

• The Future

Agenda

• A profiling tool to gather diagnostics & profiling data
• From an in-flight Java application

• Event-based, many different types of event

• Low overhead
• Oracle claim ~1% impact to steady state performance
• Observed: ~3-5% (depending on sensitivity)

• Hotspot-specific technology
• Directly integrated into the core of the VM
• Some work being done to make it work with GraalVM

What’s JDK Flight Recorder (JFR)?

History & How We Got Here

Java 7
Oracle merge
JRockit with

HotSpot & add JFR

Java 14
JFR Event

Streaming. JFR
Backport to Java 8

April 2008
Oracle acquire BEA
& Flight Recorder

technology

Java 14Java 7April Java 11

Java 11
JFR released
as fully OSS

Java 17

Java 17
First LTS with

JFR Streaming

20182008 2021

• JFR is started in various ways
• With a command line flag
• Dynamically at runtime
• Via JMX

• Generates an output file
• High-performance binary file

• Ships with 2 pre-configured profiles
• Called default and profile (XML configs)
• Can also create a completely custom profile

Introducing JDK Flight Recorder

• Cloud-Native is increasingly our reality

• 70% of apps are containerized (& rising fast)
• Caveat - depends on market segment & maturity

• Increasing Complexity of Microservice Architectures

• Observability has grown out of APM & Monitoring segments
• Old approaches are not suitable for Cloud Native

Why?

https://newrelic.com/resources/report/2022-state-of-java-ecosystem

• Application Performance Monitoring (APM) has ~15 year history

• Different world
• Release cycles measured in months, not days
• Monoliths, not microservices
• En premises, not cloud-native

• Manual & semi-manual instrumentation

• Relatively simple architectures
• Allowed ops teams to develop intuition for failure modes

History of APM

Old School Architecture

cluster

Java
source
code

.class
file

javac

web

JVM

load balancer

CI jar

development environment data sourceJVMJVM

web web web

• Modern apps are much more complex
• More services & components
• More complex topology
• More sources of change & more rapid change

• New technologies with new behaviours
• Dynamically scaling services
• Container environments
• Kubernetes
• Function-as-a-Serivce
• Kafka

How Do We Understand Cloud-Native Apps?

• Conceptually simple
• Instrument systems & applications to collect observability data
• Send this data to external system that can store & analyze it
• Provide insights (for devops, management, SREs) into systems
• Get answers to questions that you didn’t know you’d have to ask

• System control theory
• How well can internal state of a system be inferred from outside?

• Actionable insights from the entire system
• Not just one piece

• Tell you the overall health

What is Observability?

JFR Flags & Command Line Tools

-XX:StartFlightRecording=\
 disk=true,\
 dumponexit=true,\
 filename=recording.jfr,\
 maxsize=1024m,\
 maxage=1d,\
 settings=profile,\
 path-to-gc-roots=true

java -XX:+FlightRecorder
 -XX:StartFlightRecording=duration=200s,filename=flight.jfr Klass

• The Java command - jcmd can be used to control JFR

• Can start and stop

• Dump a current snapshot

Using jcmd

$ jcmd <pid> JFR.start name=Recording1 settings=default
$ jcmd <pid> JFR.dump filename=recording.jfr
$ jcmd <pid> JFR.stop

• Use JFR as a “ring buffer”

• Use jcmd to dump the file as required

• Ssh in & dump the buffer
• Allows you to “go back in time”

• JFR command-line tooling
• Jfr command

Best Practices

JFR Command Line

DEMO

• A graphical tool used to display JFR output data
• JFR files are dense, binary files
• No official specification of the file format
• JMC has its parser (uses OSGi)
• Other parsers exist

• JMC originally bundled with Oracle JDK download

• Now a separate project: https://jdk.java.net/jmc/

JDK Mission Control

https://jdk.java.net/jmc/

JDK Mission Control

DEMO

Starting Flight Recorder From JMC

JMC Profiling Options

• JFR ships a programmatic API
• For working with JFR files

• In jdk.jfr module
• NOT a java.* module
• Implementation-dependent (i.e. Hotspot only)

• Parse files
• Read individual events
• Handle common JFR data types

Programmatic JFR

JFR File Parsing

var recordingFile = new RecordingFile(Path.of(fileName));
while (recordingFile.hasMoreEvents()) {
 var event = recordingFile.readEvent();
 if (event != null) {
 var details = decodeEvent(event);
 if (details == null) {
 // Log a failure to recognise details
 } else {
 // Process details
 System.out.println(details);
 }
 }
}

Programmatic JFR

DEMO
https://github.com/kittylyst/jfr-hacks

• OSS Project
• Provides query interface to JFR data sources
• Write in an SQL dialect to extract events
• Gunnar Morning (Red Hat)

• Relies on Apache Calcite
• Source code: https://github.com/moditect/jfr-analytics

JFR Analytics

https://github.com/moditect/jfr-analytics

JFR Analysis - Example

https://developers.redhat.com/articles/2022/04/19/best-practices-java-single-core-containers

JFR Analytics

DEMO
https://github.com/kittylyst/jfr-hacks

• File handling is geared towards debugging a single VM

• Awkward for monitoring / Observability
• Ideally want a stream of telemetry data

• Solutions
• On-demand recordings (Cryostat - Red Hat)
• Create a pseudo stream (New Relic)
• Send Sequence of chunks (Datadog)
• JFR Streaming (Java 17 only :()

Automated

Distributed System running on OpenShift

Request

Red Hat OpenShift

Database

Database

Mainframe

Administrator

Service
(Kafka)

Service
(Quarkus)

Service
(Decision
Manager)

Service
(Camel)

Service
(Service Mesh)

Service
(Spring Boot)

Service
(Node.JS)

Service
(DataGrid)

User

Service
(JBoss EAP)

Automated JFR - Pseudo-Stream

DEMO
https://github.com/newrelic/newrelic-jfr-core/

• JFR continues to evolve

• New event types
• E.g. Detect value-based classes

• JFR as an Observability data source
• OpenTelemetry

• Profiling is a major new area of interest
• Datadog profiler

• Look at Java 17 adoption rates
• JFR Streaming

The Future

• Java 14 introduced JFR Event Streaming
• A new usage mode for JFR
• Java 17 is the first LTS with streaming capability

• API lets programs receive callbacks for JFR events
• Can respond to them immediately.

• One obvious way to use this is as a Java Agent
• Start a background thread to receive events

JFR Event Streaming

Example JFR Java Agent

public class AgentMain implements Runnable {
 public static void premain(String agentArgs, Instrumentation inst) {
 try {
 Logger.getLogger("AgentMain").log(Level.INFO, "Attaching JFR Monitor");
 new Thread(new AgentMain()).start();
 } catch (Throwable t) {
 Logger.getLogger("AgentMain").log(Level.SEVERE,"Unable to attach JFR Monitor", t);
 }
 }

 public void run() {
 var sender = new JfrStreamEventSender();
 try (var rs = new RecordingStream()) {
 rs.enable("jdk.CPULoad").withPeriod(Duration.ofSeconds(1));
 rs.enable("jdk.JavaMonitorEnter").withThreshold(Duration.ofMillis(10));
 rs.onEvent("jdk.CPULoad", sender);
 rs.onEvent("jdk.JavaMonitorEnter", sender);
 rs.start();
 }
 }
}

• JFR API provides basic filtering
• reduce the number of events that callbacks process

• Filter Types
• Enabled - should the event be recorded at all
• Threshold - duration below which an event is not recorded
• Stack trace - if stack trace from Event.commit() should be recorded
• Period - interval at which the event is emitted, if periodic

Event Filtering

The Three Pillars of Observability

Metrics
Numbers describing a particular

process or activity measured  
over intervals of time

Traces
Data that shows which line of code
is falling to gain better visibility at
the individual user level for events

that have occurred

Logs
Immutable record of  
discrete events that  
happen over time

