
The Exceptional 
Performance of 
Kotlin
Lil’ Exception Revisited
(P.S. Avoid autoboxing)



TL;DR

Circumstances should determine the solution, not preferences.
Things that appear innocuous on their own can become problems at scale.



www.apiumhub.com

Passeig de Gràcia 28, 4o, 
08007 Barcelona

(+34) 934 815 085

http://www.apiumhub.com/


Prologue



Background (pt. 1)

“Don’t use exceptions to control 
flow”.
Better to use if-statements and 
other manners to manage flow 
without generating an exception.
Circumstances can change!
What could/should we do if we 
needed to communicate a state of 
exception?



Background (pt. 1)

“Don’t use exceptions to control 
flow”.
Better to use if-statements and 
other manners to manage flow 
without generating an exception.
Circumstances can change!
What could/should we do if we 
needed to communicate a state of 
exception?



Background (pt. 2)

Based on the article “The Exceptional 
Performance of Lil’ Exception” by Aleksey Shipilëv.
https://shipilev.net/blog/2014/exceptional-perfor
mance/
TL;DR - Measure the performance of exception 
handling with a variety of techniques using JMH.
Iteratively elevate the probability of an exception 
occurring to show a higher and higher exception-
handling load.
What if we write it in Rust Kotlin?

https://shipilev.net/blog/2014/exceptional-performance/
https://shipilev.net/blog/2014/exceptional-performance/


About JMH

Java Microbenchmark Harness: A structure for 
mounting and executing performance tests 
(preferably for small sections of code).
Gives options to show operation time, objects created, 
etc.
Avoids risks like:

○ Performance distortion due to the warm-up of the 
JVM.

○ Use of the wrong clock for measuring elapsed time.
More information: 
https://www.baeldung.com/java-microbenchmark-har
ness

https://www.baeldung.com/java-microbenchmark-harness
https://www.baeldung.com/java-microbenchmark-harness


The Exceptions Family

“Lil’ Exception”: A standard exception that 
contains (hypothetical) metadata.

“Lil’ Stackless Exception”: Modified to not 
generate a stack trace on instantiation.



More Members!

“Lil’ Result”: A sealed class that contains 
“success” and “failure” implementations (and 
could contain more).

“Lil’ Outcome”: Inline class that contains 
the result value.



Getting To 
Work



The Conditions

Launch a call in two scenarios to return either a result or an exception:
○One layer of functions (and using -XX:-Inline).
○ Sixteen layers of functions.

The exception probability is incremented logarithmically (1 ppm => 900.000 ppm).
Five rounds of “warm-up”, then five rounds of execution in five sub-processes.
Execution time is measured in nanoseconds.



The Approaches: “Dynamic”

Create an exception with a stack trace 
and permit it to bubble up.
Advantages:

○ Caught and handled only where it’s 
needed (i.e. try/catch).

Disadvantages:
○ Generation of a stack trace for the 

construction of every exception.
○ “Stack unwinding” - can be costly for 

exceptions generated in code 
underneath many layers of functions.



The Approaches: “Dynamic Stackless”

Create an exception without a stack trace 
and permit it to bubble up.
Advantages:

○ Avoids the costly generation of a stack 
trace.

Disadvantages:
○ Will not be able to use the stack trace in 

exception reporting.



The Approaches: “Static”

Like in “Dynamic”, but using a single 
object in cache.
Advantages:

○ Minimizes stack trace generation.
○ Minimizes object creation.

Disadvantages:
○ Will not be able to use the stack trace in 

exception reporting.
○ Potential problems in thread-safety.



The Approaches: “Flags”

Return a value designated as “exception 
case” instead of throwing an exception.
Advantages:

○ Avoids the costly generation of a stack 
trace.

○ Consistent flow.
Disadvantages:

○ Verifying the exception case costs ops.
○ A potential mix of concerns (i.e. a 

business object with the control logic).



The Approaches: “Sealed Class”

Designate that the function return an object 
with a type of a fixed set of classes to signal 
either a success or a failure (i.e. a Monad).

Advantages:
○ Forces that exception cases are 

handled without try/catch.
○ Consistent flow.

Disadvantages:
○ High turnover of objects due to 

creating one for each call to the 
function.

Designate that the function return an 
object with a type of a fixed set of classes 
to signal either a success or a failure.



The Approaches: “Clase Inline”

Wrap the value in an inline class.
The functions of the class can determine 
the state of exception.
Advantages:

○ Can create an “intelligent flag” that 
contains additional functions.

○ Consistent flow.
Disadvantages:

○ Still mixing business and control logic.
○ Only can contain one variable in 

comparison with sealed classes.



The Approaches: “Inline Autobox”

Kotlin can conduct autoboxing of inline 
classes in specific circumstances.
https://typealias.com/guides/inline-classe
s-and-autoboxing/
Advantages:
○😅

Disadvantages:
○ A lot of ops and object turnover in the 

heap due to the conversion of a 
primitive into a class and back.

https://typealias.com/guides/inline-classes-and-autoboxing/
https://typealias.com/guides/inline-classes-and-autoboxing/


The Approaches: “Result (Primitive)”

Use a class designed by Kotlin that’s 
similar to the Vavr class Either.
Advantages:

○ Flow of inline class plus access to 
exception objects.

○ Consistent flow.
Disadvantages:

○ Lack of primitive generics signifies 
more autoboxing.

○ Still generating an exception.



The Approaches: “Result (w/ Wrapper)”

Create a class that serves as a wrapper 
for the primitive.
Operator functions simulate direct 
operations.
Advantages:

○ “Autobox penalty” eliminated.
○ Consistent flow.

Disadvantages:
○ Needs repetitive code for accessing the 

payload.
○ More code to maintain.
○ Still generating an exception.



Platform

Operating System: MacOS Monterrey 12.4
CPU: Intel Core i7 2,6 GHz 6-Core
Memory: 16 GB 2667 MHz DDR4
Java: Temurin JDK 18.0.1+10
Kotlin: 1.7.0
JMH: 1.27



The Moment of Truth



The Results - One Layer



The Results - Sixteen Layers



Comments

No ops < ops.
Generating a stack trace is 
expensive.
Result: Room for improvements.
Autoboxing is bad, mkay?



Verdict?

It Depends!
Exceptions give the best performance if they’re used “exceptionally”.
Performance begins to drop off with a frequency of >0.1%.
BUT: Being I/O-constrained signifies less dependency on CPU performance.
It’d be possible to exchange performance for a more precise flow of error-
handling.
Small mistakes can add up.

It Depends!
Exceptions give the best performance if they’re used “exceptionally”.
Performance begins to drop off with a frequency of >0.1%.
BUT: Being I/O-constrained signifies less dependency on CPU performance.
It’d be possible to exchange performance for a more precise flow of error-
handling.
Small mistakes can add up (BE CAREFUL WITH AUTOBOXING!).



www.apiumhub.com

Passeig de Gràcia 28, 4o, 
08007 Barcelona

(+34) 934 815 085

http://www.apiumhub.com/

	(P.S. Avoid autoboxing)
	TL;DR
	Slide 3
	Prologue
	Background (pt. 1)
	Background (pt. 1) (2)
	Background (pt. 2)
	About JMH
	The Exceptions Family
	More Members!
	Getting To Work
	The Conditions
	The Approaches: “Dynamic”
	The Approaches: “Dynamic Stackless”
	The Approaches: “Static”
	The Approaches: “Flags”
	The Approaches: “Sealed Class”
	The Approaches: “Clase Inline”
	The Approaches: “Inline Autobox”
	The Approaches: “Result (Primitive)”
	The Approaches: “Result (w/ Wrapper)”
	Platform
	The Moment of Truth
	The Results - One Layer
	The Results - Sixteen Layers
	Comments
	Verdict?
	Slide 28

